Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses.
نویسندگان
چکیده
Stomata are adjustable pores in the plant epidermis that regulate gas exchange between the plant and atmosphere; they are present on the aerial portions of most higher plants. Genetic pathways controlling stomatal development and distribution have been described in some detail for one dicot species, Arabidopsis, in which three paralogous bHLH transcription factors, FAMA, MUTE and SPCH, control discrete sequential stages in stomatal development. Orthologs of FAMA, MUTE and SPCH are present in other flowering plants. This observation is of particular interest when considering the grasses, because both the morphology of guard cells and their tissue distributions differ substantially between Arabidopsis and this group. By examining gene expression patterns, insertional mutants and cross-species complementation studies, we find evidence that FAMA function is conserved between monocots and dicots, despite their different stomatal morphologies, whereas the roles of MUTE and two SPCH paralogs are somewhat divergent.
منابع مشابه
Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.
Stomata, epidermal valves facilitating plant-atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix-loop-helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot's developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using u...
متن کاملOrigins and Evolution of Stomatal Development.
The fossil record suggests stomata-like pores were present on the surfaces of land plants over 400 million years ago. Whether stomata arose once or whether they arose independently across newly evolving land plant lineages has long been a matter of debate. In Arabidopsis, a genetic toolbox has been identified that tightly controls stomatal development and patterning. This includes the basic hel...
متن کاملOrigins and Evolution of Stomatal Development1[OPEN]
The fossil record suggests stomata-like pores were present on the surfaces of land plants over 400 million years ago. Whether stomata arose once or whether they arose independently across newly evolving land plant lineages has long been a matter of debate. In Arabidopsis, a genetic toolbox has been identified that tightly controls stomatal development and patterning. This includes the basic hel...
متن کاملOut of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development.
Stomata are microscopic valves on the plant epidermis that played a critical role in the evolution of land plants. Studies in the model dicot Arabidopsis thaliana have identified key transcription factors and signaling pathways controlling stomatal patterning and differentiation. Three paralogous Arabidopsis basic helix-loop-helix proteins, SPEECHLESS (SPCH), MUTE, and FAMA, mediate sequential ...
متن کاملA subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana.
Stomata are specialized cellular structures in the epidermis of aerial plant organs that control gas exchange (H(2)O release and CO(2) uptake) between leaves and the atmosphere by modulating the aperture of a pore flanked by two guard cells. Stomata are nonrandomly distributed, and their density is controlled by endogenous and environmental factors. To gain insight into the molecular mechanisms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 136 13 شماره
صفحات -
تاریخ انتشار 2009